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Synopsis 

Continuous thermodynamics is used to calculate liquid-liquid equilibria in a ternary system 
containing polydisperse polymer, one good solvent and one poor solvent (antisolvent). The 
polymer has a semiinfinite molecular-weight distribution which can be described by a gamma 
distribution. From Flory-Huggins theory, the logarithm of the distribution ratio of the polymer 
is a linear function of the molecular weight. Because the distribution of polymer between the two 
liquid phases is very sensitive to the choice of binary Flory parameters, the Flory parameters 
must be fitted to the ternary data. Results are given for the system benzene, ethanol, and 
polydisperse polystyrene. 

INTRODUCTION 

A classical method for fractionating a polydisperse polymer is to dissolve 
the polymer completely in a good solvent and then, progressively, to add small 
amounts of a poor solvent (antisolvent). The high-molecular-weight polymer 
precipitates first. As more antisolvent is added, progressively lower- 
molecular-weight polymer precipitates. 

To obtain quantitative representation of fractionation, we require a model 
for the thermodynamic properties of the polymer/solvent/antisolven t system 
and we must specify the original molecular-weight distribution. 

Continuous thermodynamics provides a useful tool for fractionation calcula- 
tions. When compared to the pseudocomponent method, continuous thermo- 
dynamics has two advantages: Computer-time requirements are often reduced 
and, more important, ambiguous results, based on arbitrary definition of 
pseudocomponents, are a~oided.l-~ 

Cotterman and Prausnitz applied continuous thermodynamics and 
Flory-Huggins theory to calculate the effect of temperature on equilibria in a 
system containing one polymer and one solvent.6 Continuous thermodynamics 
has also been applied to calculate phase behavior in the high-pressure ethy- 
lene-polyethylene system by Ratzsch and Kehlen5p7 and by Sako et a1.' The 
purpose of this work is to show that continuous thermodynamics provides a 
useful tool for describing phase equilibria in a system containing one polymer 
and two solvents. 
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THEORY 

We consider two equilibrated liquid phases, containing one good solvent (l), 
one poor solvent (2), and one polydisperse polymer (3). For every component, 
the activity in phase ' is equal to that in phase ": 

a; = a; (1) 

a; = ag' 

a;( J) = a;( J )  

where ' and " denote the precipitate and the supernatant phase, respectively. 
A t  constant temperature, all activities depend on concentration but, in addi- 
tion, the activity of the polymer is a function of molecular weight, J. 

We use the Flory-Huggins theory of polymer  solution^.^. lo As shown in the 
Appendix, the activities are given by 

' 2  a: Ins, = l na l  + (a2 + (P:) - - - = 
7322 m 3  

In a2 = In@., + (@l + (P:) - Q1m2 - m 2 .  (@'3T/nt3) 

+ (Xl2"2@l  + x23':) ' ('1 + 'T) - x 1 3  . 'I ' m2 . @.3' (5) 

In a3( J) = In (a3( J )  + 1 - Qlm3( J )  - ( Q2/m2)  . m3( J )  - m3( J )  

T -  
* ( ' 3 l m 3 )  + (X13'lm3(J) + X 2 3 ' 2 ( m 3 ( J ) / m 2 ) )  * ('1 + "2) 

- x 1 2  * ' 1  * @2 . m 3 ( J )  (6) 

where x is the Flory parameter, CP is the volume fraction, and m is the 
molar-volume ratio of a given species to that of solvent 1. For the polymer, 
volume fraction and molar-volume ratio are functions of molecular weight, J.  
Total volume fraction of the polymer is denoted by @:. We assume that Flory 
parameters x I 3  and ~ 2 3  are independent of J. 

The distribution factor K i  is defined as the ratio @//(Pi'. From eqs. (4)-(6), 
we obtain 

In K ,  = In( @;/@?) 
= + 2 x 1 3 .  (@; - @r') + ('4 - ' 4 ' )  * ( x 1 3  - x l 2  + X 2 3 / m 2 )  (7) 

In K 2  = In( 'Pi/@;) 

= m2 * [ - u  + 2 ( ~ ~ ~ / m 2 )  . ('4 - @;) 

+ ('; - ';') * ( x 1 3  - x 1 2  + X 2 3 / m 2 ) I  (8) 
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In K3( J )  = In[ @;( J)/@?( J ) ]  = -m3( J )  . u (9) 

-(1 - @; - @;)/q + (1 - @; - @P)/m;; 

From material balance, feed composition 0: is related to @; and @pP by 

@[( J )  = a;( J)(V,'/V,) + a;'( J ) ( 1  - V,l/VF) (13) 

APPLICATION 

To illustrate the use of these equations, we consider the system benzene (l), 
ethanol (2), and polydisperse polystyrene (3) at 38.6"C. Experimental data for 
this system were reported by Breitenbach and Wolf." We have performed a 
flash calculation for the case where the volume fraction of polystyrene in the 
feed is 0.0027 and where the volumetric ratio of benzene to ethanol is 2 : 1. 
From molar-volume data for benzene and ethanol,12 and from partial- 
specific-volume data for poly~tyrene,'~ the molar-volume ratios m2 and 
m3( J )  are given by 

m2 = 0.656 

m3( J )  = 0.0101 . J 

The mass distribution of polymer molecular weight given by Breitenbach and 
Wolf is semiinfinite," starting at  zero molecular weight, with a mean of 
2.19 X lo5, and a variance of 2.46 X 10". We fit this mass distribution with a 
gamma distribution F( J )  of the form 

where a, B, and y are adjustable parameters and r ( a )  is the gamma function 
of a. For gamma distribution, the mean and variance are given by ab + y and 
(up2, respectively, and the starting point is y. From the mass distribution of 
polymer, we obtain a = 1.95, /3 = 1.12 X lo5, and y = 0. 
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For the three binary systems, we use the Flory parameters 

X I Z  = 1.739 

X 1 3  = 0.2210 

xZ3  = 1.451 

The flash calculation shows that the volumetric ratio of polymer in the 
supernatant phase to that in the precipitate phase is 1.002. The volumetric 
ratio of supernatant phase to the feed, f,, is 0.967. In comparison, the 
experimental result shows that the volumetric ratio of polymer in the super- 
natant phase to that in the precipitate phase is 1.038; and the volumetric 
ratio of supernatant phase to the feed, f,, is 0.993. 

From eq. (9), we obtain an expression for the volumetric ratio of polymer in 
the supernatant phase to that in the precipitate phase, M,( J ) ,  as a function 
of polymer molecular weight J: 

In eq. (14), the only dependence on polymer molecular weight J is the linear 
dependence of m3( J )  on J.  Therefore, as shown in Figure 1, there is a linear 
relationship between h[ M,( J ) ]  and polymer molecular weight J. 

Figure 2 shows the distributions of polystyrene in the feed, precipitate 
phase, and supernatant phase. The flash calculations are very sensitive to the 
values used for Flory parameters. Figure 1 shows the effect on distribution of 
polymer between the two phases when each x is set higher by 1%. Calculated 
results are particularly sensitive to Flory parameter x23. 

The Flory parameters used in this calculation provide the best fit for the 
experimental fractionation data. From Scatchard-Hildebrand theory, Flory 
parameter x is related to solubility parameter S by 

where ua is molar volume of (solvent) component a. Using eq. (15) and 
tabulated solubility parameters,’2 x I 2 ,  x I 3 ,  and x 2 3  are 2.13, 0.0015, and 1.47, 
respectively. 
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experimental (Breitenbach and Wolf) 

__ calculated with best-fit x ' s  

(a) calculated with x12 higher by 1% 

I I I 
0 0  10 2 0  3 0  4 0  0 

Molecular Weight *lo5 
Fig. 1. Distribution of polystyrene between the supernatant phase and the precipitate phase. 

For the binary system ethanol and polystyrene, there is good agreement 
between the best-fit parameter and that calculated from Scatchard-Hildebrand 
theory. For the binary system benzene and polystyrene, the reported experi- 
mental values of xI3 range from 0.19 to 0.46.14 This range includes the value 
that was used in the flash calculation ( x I 3  = 0.2210). The result from solubil- 
ity-parameter calculations (0.0015) is clearly too low. 

For the binary system benzene and ethanol, we used experimental 
vapor-liquid data reported by Udovenko at 4O0C.I5 We used a constant xI2 
for the entire concentration region and found xlz = 2.24 to be the best fit.* 
This xI2 value is much higher than the one used to correlate the ternary data. 
Clearly, for ternary systems, Flory paramete= must be fitted to the ternary 
data. 

CONCLUSION 

Continuous thermodynamics provides a convenient method for calculating 
liquid-liquid equilibria in a ternary system containing polydisperse polymer, 
one good solvent and one poor solvent (antisolvent). when Flory-Huggins 
theory is used to describe the Gibbs energy of mixing, it follows that the 

*For the molar-volume ratio in this binary system (m2 = 0.656), the two components are 
completely miscible when x , ~  I 2.50. 
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feed 

supernatant phase _ _ _ - - - - -  
precipitate phase 

. . . . . . . . . . . . . . . . . . . . . . . .. . . .. .. . . . . ....... . . .. 

1 I 

0.0 2.0 4 0  6.0 8.0 0 

Molecular Weight *lo5 

Fig. 2. Volume distributions of polydisperse polystyrene. 

logarithm of the distribution ratio of the polymer is a linear function of the 
molecular weight, in agreement with experiment. Since the calculations are 
very sensitive to the choice of binary Flory parameters, calculated ternary 
results must unfortunately be fitted to a few ternary data; quantitative 
predictions from binary data alone are not accurate. 

APPENDIX A: DERIVATIONS OF EQS. (4)-(6) 

We consider a system containing one good solvent (I), one poor solvent (Z), and a polydisperse 
polymer ( t  = 3,4,5, . . ), where t denotes polymer molecules of the same chemical composition 
but different molecular weights. From Flory-Huggins theory, the Gibbs energy of mixing is given 
by% 10 

A G ~ ~  = k~ n, ~n@, + n2 ha2 + C n, ha., 
1-3 

+x12n1@2 + c x1.,n1@, + c X 2 3 2 Q r  

+ c c X&@, 
z = 3  1-3 

I 
(16) I 1=3 j = 3  

I+., 

where n is the number of molecules, k is Boltmann's constant, and T is temperature. Because 
components (3), (4), (5), . . . are chemically the same, we have 

XZJ = 

X I 6  = XI, 

X2" = x 2 ,  

where I, j =  3,4;. . 
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Equation (16) becomes 

AGk, = kT n, lnQ1 + n2 lnQ2 + c n3i [ i = l  

+x12n1@2 + Xlanl( c 6 3 i )  + X u n 2 (  c .i)] 
r = l  i = l  

In Eq. (17), 32 ( i  = 1,2,3, . . . ) denotes polymer molecules of different molecular weights. 
Activities u and chemical potentials I( are related to AG-x by 

where NAv is Avogadro's number. 
Volume fraction 0 and number of molecules n are related by 

where m is the molar-volume ratio of a given species to that of solvent 1. The number average of 
m3i is given by 

- 
m3 = ( m3..3.)/( n 3 J  

Combining eqs. (17)-(24), we obtain expressions for the activities 

~n a, = ln o1 + ( a2 + @:) - ~ ~ / m ,  - @r/G 
+ (x12@2 -b x13':) . (@2 + @:) - x 2 3  . ('2/m2) ' ': 

~n u2 = tna2 + (al + Q:) - @.,m2 - m2 I 

+ ( X12m2@1 -k x23@?) . ( @ I  + @?) - x 1 3  ' @I . m2 . 'r 
tn u3r = ha3, + I - Qlm3, - ( a 2 / m 2 )  . mat - mSr . (c$'/<) 

+(X13@lm3z + X23@2m3t/m2) . ('1 + @2) 

- Xl2  . @I . @2 .m3c 

where total volume fraction of the polymer is given by 

@: = c @331 
r=  1 
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NOMENCLATURE 

Upper Case 

molecular weight of a polymer molecule 
distribution factor (ratio of volume fraction in the supernatant phase 
to that in the precipitate phase for species i) 
distribution factor of polymer with molecular weight J 
distribution ratio (volumetric ratio of polymer in the supernatant 
phase to that in the precipitate phase as a function of J )  
gas constant 
absolute temperature 

Lower Case 

activity 
volumetric ratio of supernatant phase to the feed 
Boltzmann's constant (used in the Appendix) 
molar-volume ratio of solvent 2 to solvent 1 
molar-volume ratio of the polymer with molecular weight J to sol- 
vent 1 
number average of m3( I) 
molar volume 

Greek Symbols 

parameters for gamma distribution 
solubility parameter 
volume fraction of species i 
volume fraction of polymer with molecular weight J 
total volume fraction of the polydisperse polymer 
chemical potential 
Flory parameter for ij binary 

Subscripts and Superscripts 

Subscripts 

good solvent for the polymer 
poor solvent for the polymer 
polymer 
integer numbers refer to component a, b 

Superscripts 

feed 
supernatant phase 
precipitate phase 

This work was supported by the Director, Office of Energy Research, Office of Basic Energy 
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